skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Elena Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal–organic frameworks bearing coordinatively unsaturated Mg( ii ) sites are promising materials for gas storage, chemical separations, and drug delivery due to their low molecular weights and lack of toxicity. However, there remains a limited number of such MOFs reported in the literature. Herein, we investigate the gas sorption properties of the understudied framework Mg 2 ( m -dobdc) (dobdc 4− = 4,6-dioxido-1,3-benzenedicarboxylate) synthesized under both solvothermal and mechanochemical conditions. Both materials are found to be permanently porous, as confirmed by 77 K N 2 adsorption measurements. In particular, Mg 2 ( m -dobdc) synthesized under mechanochemical conditions using exogenous organic base displays one of the highest capacities reported to date (6.14 mmol g −1 ) for CO 2 capture in a porous solid under simulated coal flue gas conditions (150 mbar, 40 °C). As such, mechanochemically synthesized Mg 2 ( m -dobdc) represents a promising new framework for applications requiring high gas adsorption capacities in a porous solid. 
    more » « less